

Semantic Technology and Level 5 Autonomous Driving

Computational Intelligence (COIN) Laboratory Toyota Technological Institute

November 28, 2018

Yutaka Sasaki

Toyota Technological Institute (TTI)

- Established by Toyota Motor Corp. in 1981 as one of its social contributions.
- Compact university admitting about 100 undergrads and about 45 postgrads each year.
- Located in Nagoya City.

(Disclaimer: This presentation does not express any technical standpoint of Toyota companies.)

Toyota Technological Institute (cont.)

- One faculty with 3 courses:
 - mechanical system engineering
 - electronics & information engineering
 - material science and engineering.
- 46 faculty members closely related.
- Established Toyota Technological Institute at Chicago (TTIC) on the University of the Chicago campus in 2003.
 - KITTI (vision data set)

TTI Research Center for Smart Vehicles

- Established in 2010.
- Research goals:

- Develop key technologies essential for realizing Smart Vehicles,
- Targeting cutting-edge technologies suitable for university laboratories.

NB: "Smart Vehicle" means any kinds of intelligent unmanned vehicles, including autonomous robots and UAVs.

Self-driving Technology

SAE levels of automated driving

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Huma	<i>n driver</i> monite	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the <i>human</i> <i>driver</i> perform all remaining aspects of the <i>dynamic driving</i> <i>task</i>	System	Human driver	Human driver	Some driving modes
Automated driving system ("system") monitors the driving environment				-		
3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated</i> <i>driving system</i> of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a <i>request to intervene</i>	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode</i> -specific performance by an automated driving system of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

(https://www.sae.org/misc/pdfs/automated_driving.pdf)

Copyright © 2014 SAE International. The summary table may be freely copied and distributed provided SAE International and J3016 are acknowledged as the source and must be reproduced AS-IS.

Research areas of self-driving

<u>Hardware</u>

Sensors:

Lidar, millimeter radar, sonar,

GPS, steering angle, velocity, accelerometer,

camera (stereo, IR, FIR)

Body:

motor, steering, brake, accelerator, body material, shape, ...

<u>Software</u>

Object/position detection: lane, car, human, bicycle, ... Scene understanding: object movement, intension, collision detection Control: steering, speed, path planning High-level control: knowledge base, dialogue, reasoning

Infrastructure

Intelligent Transport System (ITS): vehicle-to-vehicle communication, driving safety support (digital traffic signal, traffic regulation info, road side sensor), 3D digital road map

2018/11/28

(C)2018 Yutaka Sasaki, TTI (JIST2018)

Why we need driving knowledge bases?

- In the fully automated (level 5) driving,
 - cars should do (without a human driver):
 - Careful consideration of passengers/destinations
 - Decision making in some exceptional road conditions
 - Conversations, like with a taxi driver
 - In accidents, the car should know what to do
 - Avoidance of criminal usages

Almost equivalent to creating AI robots!

Comparison with autonomous robots

- In a general sense, autonomous cars are a kind of autonomous robots, sometimes called as robot cars.
- Autonomous cars are constrained by:
 - Strict regulations such as traffic laws.
 - Underactuated manipulation: Inputs are steering and brake/accelerator (gas) for 6 degrees of freedom.
 - Highest priority in safe driving.

For knowledge-based driving, these constraints are not disadvantages but can be advantages.

Three Laws of Robotics

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Isaac Asimov, "Runaround", I, Robot, 1950.

Three Laws of Autonomous Vehicles

- 1. An autonomous vehicle may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. An autonomous vehicle must obey laws except where such orders would conflict with the First Law.
- 3. An autonomous vehicle must obey the orders given it by human beings except where such orders would conflict with the First or Second Laws.

Yutaka Sasaki, presentation material, Smart Vehicles Research Center Symposium 2016. (in Japanese)

Our approach to level 5 self-driving

Current self-driving

Research topics:

- How to model driving knowledge bases?
- How to acquire driving knowledge?
- How to manage the knowledge bases?
- How to achieve real time performance?
- How to evaluate KB quality?

Advantages of driving knowledge bases

- Enable:
 - to obey traffic laws while driving.
 - to follow driving manners, e.g. hazard flashers.
 - (shallow) reasoning like human drivers do.
 - to make conversation, like with a taxi driver.
 - to drive carefully for safety, like slowing down when seeing some children on a side walk.
 - to make decisions using common sense, e.g. inoperative traffic signals.
- Can be updated/corrected independent of driving control software.

Semantic Technology for self-driving

Ontology-based driving (at intersections)

- Ralf Regele, Using Ontology-Based Traffic Models for More Efficient Decision Making of Autonomous Vehicles, Fourth International Conference on Autonomic and Autonomous Systems, 2008.
- B. Hummel, Description logic for scene understanding at the example of urban road intersections, Fakultät für Maschinenbau Universitat Karlsruhe (TH), 2009.
- Michael Hülsen et al., Traffic intersection situation description ontology for advanced driver assistance, IEEE Intelligent Vehicles Symposium (IV), 2011.
- Edson Prestes et al., Core Ontology for Robotics and Automation, Workshop on Standardized Knowledge Representation and Ontologies for Robotics and Automation, 2014.
- Armand et al., Ontology-based context awareness for driving assistance systems, IEEE Intelligent Vehicles Symposium (IV), 2014.
- Brunner et al., 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Ontologies Used in Robotics: A Survey with an Outlook for Automated Driving, 2017
- Lihua Zhao, Ryutaro Ichise, Seiichi Mita, Yutaka Sasaki, An Ontology-Based Intelligent Speed Adaptation System for Autonomous Cars, The 4th Joint International Semantic Technology Conference (JIST2014), 2014
- Lihua Zhao, Ryutaro Ichise, Tatsuya Yoshikawa, Takeshi Naito, Toshiaki Kakinani, Yutaka Sasaki, Ontology-based Decision Making on Uncontrolled Intersections and Narrow Roads, 2015 IEEE Intelligent Vehicles Symposium, Seoul, 2015.
- Lihua Zhao, Ryutaro Ichise, Yutaka Sasaki, Zheng Liu, Tatsuya Yoshikawa, Fast Decision Making using Ontologybased Knowledge Base, 2016 IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, June 2016.
- Lihua Zhao, Ryutaro Ichise Zheng Liu, Seiichi Mita, and Yutaka Sasaki, Ontology-based Driving Decision Making: A Feasibility Study at Uncontrolled Intersections, IEICE Transactions on Information and Systems, Vol. E100.D, No. 7, pp. 1425-1439, 2017.

Ontology-based Traffic Models

- CyberCars-2 Project (FP5)
 - "development of a fleet of fully autonomous cybercars which can be used for passenger transport."
 - introduction of road connection networks with conflict, neighboring and opposing relations.

- The model does not contain semantic information:
 - speed limitation, actual geometric information of the roads.

2018/11/28

Logical representation of road intersections [Hummel, 2009]

Formal representations with **Description Logic**

Terminological box (TBox)

• Assertion box (ABox)

α = {*georgeSt*: ∃*hasPart*. (*OneWayLaneSouth*∐*TwoWayLane*)} (George St. has some lane with driving direction southwards.)

Traffic Intersection Situation Description Ontology [Hülsen et al. 2011]

• Intersection ontologies contain concepts of car, crossing, road connection (lane and road), and sign at crossing (traffic light and traffic sign).

Rule: $Crossing(?cr) \land neg(CrossingWTrafficLight(?cr)) \land neg(CrossingWTrafficSign(?cr)) \rightarrow CrossingPlain(?cr)$

- In a simple intersection case, it takes less than 0.5s for DL reasoning. In a complex case, it takes 1.1-3.6s.
- Not tested with simulation or real-world data.

Core Ontology for Robotics and Automation (CORA) [Prestes et al. 2014]

- Drafted by IEEE Standard Association (IEEE SA)
- Extended the Suggested Upper Merged Ontology (SUMO).

Ontology-Based Context Awareness

- An ontology includes context concepts:
 - Mobile Entity (Pedestrian and Vehicle), Static Entity (Road Infrastructure and Road Intersection), context parameters (isClose, isFollowing, and isToReach)
- to understand the context information when it approaches road intersections.
- 14 SWRL rules of spatio-temporal relationships (example)

```
vehicle(?v1) ∧ StopIntersection(?stop1) ∧ isToReach(?v1,?stop1)

→ hasToStop(?v1,?stop1)
```

(A vehicle that is about to reach a stop intersection has to stop at the intersection.)

stop

TTI Ontology

ALCONG.

[Zhao et al. 2014]

• Driving ontology development since 2009.

					AB CO	Table A
	Car data	Control data	Map data		Greateyarra (S SEGRE C UMPR Autor	agenerative part of the second
	Decision rules (SWRL)			Onotrejartariarian BERTER RELEASE	Stradi fvs O Herey Mailer Allun	
	Car Ontology	Control Ontology	Map Ontolo	ogy	Hore pairs PACER	Terpasku /HS 5,00 Terpasku /Awi XEG University SUB 7: 3 and 1 University SUB 7: 3 and 1 SUB 7:
	Realtim	e reasoner (Protégé	é/pellet)		TE 94 ambespace JH9 miscare potenti 15	ann 35 Construction 2400 Construction 2 Construction 2 Construction 2 Construction 2 Construction
PreScan simulator				02 Chome-12 Hisakata		
1	Detroct for	Q. C. Automour D. i. i			-	
vame:	Dataset for	Safe Autonomous Drivi	ng			
iomepage:	http://w Denshi/C	ww.toyota-t1.ac. OIN/Ontology/]p/Lab/			
Data Dump:	TTICore-	0.3/			and the second	
/oID Descript	tion: void.ttl			150-	an and	
DF Triples:	37566					
intities:	1424				-0	
lasses	149				and the second second	

Experimental vehicle

Data Properties

Object Properties

40

35

TTI Core Ontology

https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/Ontology/TTICore-0.03/

(Licensed under CC Attribution-NonCommercial-ShareAlike 4.0 International)

TTI Core v0.03

Ontology

- Car
- Control
- Мар

Data

- Car
- Control
- Мар

TTI Core: Classes

Car class

TTI Core: Object/data properties

Control property

Map property

Visualization of road connections

Instance

Table 1: An example of map ontology based instances.

Subject	Property	Object
tempaku:Hisakata2Road	rdf:type	map:LocalRoad
tempaku:Hisakata2Road	map:speedMax	"40"^^kmh
tempaku:Hisakata2Road	map:osm_ref	osm_way:49559442
tempaku:Hisakata2Road	map:hasIntersection	tempaku:Hisakata2Int5_6
tempaku:Hisakata2Road	map:hasRoadSegment	tempaku:Hisakata2TTIRoadRS1
tempaku:Hisakata2Int5_6	rdf:type	map:Intersection
tempaku:Hisakata2Int5_6	map:boundPos	35.107663, 136.983845
tempaku:Hisakata2Int5_6	map:boundPos	35.107846, 136.983889 GPS position
tempaku:Hisakata2Int5_6	map:boundPos	35.107860, 136.983683
tempaku:Hisakata2Int5_6	map:boundPos	35.107708, 136.983604
tempaku:Hisakata2Int5_6	map:isConnectedTo	tempaku:Hisakata2RS5
tempaku:Hisakata2Int5_6	map:isConnectedTo	tempaku:Hisakata2TTIRoadRS1
tempaku:Hisakata2RS5	rdf:type	map:RoadSegment
tempaku:Hisakata2RS5	map:boundPos	35.107663, 136.983845
tempaku:Hisakata2RS5	map:boundPos	35.107357, 136.984067
tempaku:Hisakata2RS5	map:isConnectedTo	tempaku:Hisakata2Int5_6
tempaku:Hisakata2RS5Lane1	rdf:type	map:OneWayLane
tempaku:Hisakata2RS5Lane1	map:enterPos	35.107353, 136.984054
tempaku:Hisakata2RS5Lane1	map:exitPos	35.107657, 136.983832
tempaku:Hisakata2RS5Lane1	map:isLaneOf	tempaku:Hisakata2RS5
tempaku:Hisakata2RS5Lane2	rdf:type	map:OneWayLane
tempaku:Hisakata2RS5Lane2	map:enterPos	35.107667, 136.983856
tempaku:Hisakata2RS5Lane2	map:exitPos	35.107362, 136.984081
tempaku:Hisakata2RS5Lane2	map:isLaneOf	tempaku:Hisakata2RS5

Simulator/real-world Experiments

Table 5: Query th	e speed limit of curren	itPathSegment.
SELECT ?max		
WHERE {		
{ tempaku:currentPathSegment	map:isLaneOf	?roadsegment.
?roadsegment	map:isRoadSegmentOf	?road.
?road	map;speedMax	?max.
} UNION {		
?road	map:hasIntersection	map:currentPathSegment.
?road	map:speedMax	?max. }
}		

Table 6: C	-SPARQL query for checking if a car overspeeds its own speed limit
REGISTER	R QUERY OverSpeedCheck AS
SELECT ?	car
FROM STI [RANGE	REAM <http: coin="" denshi="" lab="" stream="" www.toyota-ti.ac.jp=""> 500ms STEP 50ms]</http:>
WHERE {	<pre>?car car:velocity ?speed . }</pre>
GROUP B	Y ?speed
HAVING (.	AVG(?speed) >= maxSpeed)

Table 7: Instances in the Knowledge Base.			
Types of Instances	Number of Instances	Speed Limit	
Intersection	54		
RoadSegment	59		
Kindergarten	1		
BusLane	5		
OneWayLane	162		
PrivateRoad	1	25km/h	
MunicipalRoad	1	50km/h	
LocalRoad	5	40km/h (3), 50km/h (2)	
Path	1	250 U.S. 6 100 S	

(a) PreScan Simulator Car.

(b) Intelligent Car.

Fig. 6: PreScan simulator car and intelligent car.

- Simulation: Reasoning time: 242ms
 - Query time: 2-23ms
- Real-world (Off line): Reasoning: 117ms Query time: 3-23ms

Ontology-based decision making at uncontrolled intersections

Targeted traffic scenario

- Real world problems at uncontrolled intersections, i.e. no traffic lights.
- In Japan, there are a lot of narrow roads where even human drives feel difficulty in driving.

Issues

- Car A has the lowest priority because it cannot interfere traffics on the wide road bylaw.
- Car B has higher priority than Car A.
- Car C has the highest priority.
- The narrow road is difficult for two vehicles to run freely; It is safer to stop on the left side and give way to the other vehicle to pass by slowly.
- In this case, Car A should go out of the narrow road before Car B for safe driving.

Map data creation

- Using OpenStreetMap data, we created a map data set for our ontology.
- Lane connections are manually considered.
- Independent of map data used for the drive control.

Created 3D similation

Case analysis

SWRL Rules (out of 14 rules)

- 1 collisionWarningWith(?carX, ?carY)
 - \Rightarrow CollisionWarning(?carX) \land CollisionWarning(?carY)
 - 2 Intersection(?int) ∧ isRunningOn(?carX, ?lane1)
 - ∧ turnRightTo(?lane1, ?lane2)
 - ∧ nextPathSegment(?lane1, ?int) ∧ nextPathSegment(?int, ?lane2)
 - \Rightarrow TurnRight(?carX)
 - 3 CollisionWarning(?carX) \land CollisionWarning(?carY)
 - \land GoForward(?carY) \land TurnRight(?carX)
 - \Rightarrow Stop(?carX) \land giveWay(?carX, ?carY)
 - 4 MyCar(?car1) ∧ isRunningOn(?car1, ?int) ∧ Intersection(?int) ∧ collisionWarningWith(?car1, ?car2) ⇒ Stop(?car1) ∧ giveWay(?car1, ?car2)
 - 5 TwoWayLane(?lane) ∧ isRunningOn(?carX, ?lane) CollisionWarning(?carX) ∧ CollisionWarning(?carY) ⇒ ToLeft(?carX), giveWay(?carX, ?carY)

Sensor Data Transmitter

Input : currRS # Current Road Segment Output: SubKB # Sub-Knowledge Base dirList \leftarrow getConnectedRS(currRS); $rsList \leftarrow dirList;$ SubKB $\leftarrow \emptyset$ **foreach** $rs \in dirList$ **do** rsList.add(getConnectedRS(rs)); end **foreach** $rs \in rsList$ **do** SubKB.add(getAllInfo(rs)) if <rs, map:hasLane, lane> then laneList.add(lane) else end end **foreach** *lane* \in *laneList* **do** SubKB.add(getAllInfo(lane)) end SubKB.add(SWRLRules) return SubKB

Algorithm 1: Sub-Knowledge Base construction.

Sub-Ontology (SubKB)

Subject	Property	Object
yagoto:AnoNagoyaLine	rdf:type	map:PrefecturalRoad
yagoto:AnoNagoyaLine	map:hasIntersection	yagoto:AnoNagoyaInt3_4
yagoto:AnoNagoyaLine	map:hasRoadSegmen	tyagoto:AnoNagoyaRS3
yagoto:AnoNagoyaLine	map:hasRoadSegmen	tyagoto:AnoNagoyaRS4
yagoto:AnoNagoyaLine	map:speedMax	"40"^^kmh
yagoto:AnoNagoyaLine	map:osm_way_id	osm_way:122098916
yagoto:AnoNagoyaInt3_4	rdf:type	map:Intersection
yagoto:AnoNagoyaInt3_4	map:isConnectedTo	yagoto:AnoNagoyaRS3
yagoto:AnoNagoyaInt3_4	map:isConnectedTo	yagoto:AnoNagoyaRS4
yagoto:AnoNagoyaInt3_4	map:isConnectedTo	yagoto:GrandirLaneAdapter1
yagoto:AnoNagoyaInt3_4	map:boundPos	35.134697, 136.964103
yagoto:AnoNagoyaInt3_4	map:boundPos	35.134762, 136.964181
yagoto:AnoNagoyaInt3_4	map:boundPos	35.134788, 136.964072
yagoto:AnoNagoyaRS4	rdf:type	map:RoadSegment
yagoto:AnoNagoyaRS4	map:isConnectedTo	yagoto:AnoNagoyaInt3_4
yagoto:AnoNagoyaRS4	map:isConnectedTo	yagoto:AnoNagoyaCrossWalk1
yagoto:AnoNagoyaRS4	map:boundPos	35.134697, 136.964103
yagoto:AnoNagoyaRS4	map:boundPos	35.134574, 136.964147
yagoto:AnoNagoyaRS4Lane2	rdf:type	map:OneWayLane
yagoto:AnoNagoyaRS4Lane2	map:isLaneOf	yagoto:AnoNagoyaRS4
yagoto:AnoNagoyaRS4Lane2	map:enterPos	35.134570, 136.964125
yagoto:AnoNagoyaRS4Lane2	map:exitPos	35.134693, 136.964082
yagoto:AnoNagoyaRS4Lane2	control:turnRightTo	yagoto:GrandirLaneAdapter1
yagoto:AnoNagoyaRS4Lane2	control:goStraightTo	yagoto:AnoNagoyaRS3Lane2

Real time performance

Acceleration by sub-ontology

- Whole Ontology (Map)
 - Max: 965ms
 - Min: 305ms
 - Avg: 470ms
- Sub Ontology (Sub-Map)
 - Max: 236ms
 - Min: 37ms

Size of Knowledge Base

Whole Knowledge Base
 407kb (or larger)
 Sub-Knowledge Base
 19 ~ 40kb

Criticism?

- There are always some criticism to our approach.
 - Old style
 - Knowledge-base is slow
 - Poor handling of exceptional cases
 - Following a human way would lead to unsafety
 - Deep learning is more powerful and practical

It is time for the semantic technology community to tackle the real-world problems related to self-driving.

Our on-going studies: Evaluations of Driving Ontologies

Quality evaluation of driving ontologies

- What are the conditions by which authorities approve level 5 cars to run on any public roads?
 - \rightarrow Open question!
- Idea
 - If an autonomous car passes its driver's license test, we can say the autonomous car has ability and knowledge to drive.

Overview

Paper test

Q "The traffic sign includes the instruction sign and the regulation sign." (Yes/No)

Logical form

 $\lambda x. \lambda y. \lambda z.$ TrafficSign(x) \land InstuctionSign(y) \land RegulationSign(z) \land subClassOf(y, x) \land subClassOf(z, x)

Driving test

Questions beyond the scope

- Commonsense question
 - "You can put boxes on a road" (Yes/No)
- Calculation question
 - "3 adults and 3 children can ride the car with the riding seats of 5." (Yes/No)
- Questions with figures

Our on-going studies: Driving Ontology Expansion

Adding knowledge to TTI core ontology

Converting a driving guideline to knowledge.

Knowledge acquisition

Deep Learning models

Semi-automatic ontology expansion

知能数理研究室

Computational Intelligence Lab

Term extraction

Experimental settings

Textual data:

Annotated "Rules of Road"

- #sentence : 2,150
- #words : 43,395
- #traffic terms: 8,822
- #traffic term hierarchy: 8 levels deep
- #distinct terms: : 780

Learning Model:

RNN

- dimensionality : 100
- batch size : 10
- iterations: 20,000
- type : LSTM (Long Short-Term Memory)

Term extraction results

$F\text{-measure} = \frac{2*Precision*Recall}{Presicion+Recall}$

Further uncontrolled cases

- Our previous approach targeted intersections.
- In a parking lot, we need a different approach.
 → Less restricted

- Our own simulator for parking scenario.
- Ontology rules should include parking manner, not laws.

Current progress

Parking scenario: manner-based decisions

Conclusions

- The ontology-based driving approach leads to the level 5 self-driving.
- A lot of open questions. Studies are ongoing.
- Reasoning time is an issue:
 - To accelerate, the dynamic creation of a subontology is effective.
- Semantic technology will be a core technology for the level 5 self-driving.

Acknowledgements

Collaborators

Lihua Zhao, Ryutaro Ichise, Zheng Liu, Sei-ichi Mita, Makoto Miwa, Tatsuya Yoshikawa, Takeshi Naito, Toshiaki Kakinani,

and the past and current postgraduate students at the COIN Lab. Naonori Nagano, Katana Suenaga, Junya Takayama, Zheming Lyu