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Toyota Technological Institute (TTI)

* Established by Toyota Motor Corp. in 1981 as
one of its social contributions.

 Compact university admitting about 100
undergrads and about 45 postgrads each year.
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(Disclaimer: This presentation does not express any technical standpoint of Toyota companies.)
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Toyota Technological Institute (cont.)

* One faculty with 3 courses:
— mechanical system engineering
— electronics & information engineering
— material science and engineering.

e 46 faculty members closely related.

* Established Toyota Technological Institute at
Chicago (TTIC) on the University of the Chlcago
campus in 2003.

— KITTI (vision data set)
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TTIl Research Center for Smart Vehicles

e Established in 2010.
* Research goals:

— Develop key technologies essential for realizing
Smart Vehicles,

— Targeting cutting-edge technologies suitable for
university laboratories.

NB: “Smart Vehicle” means any kinds of intelligent

unmanned vehicles, including autonomous robots
and UAVs.
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Self-driving Technology
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<pmmmerr  SAE |levels of automated driving  H#ESESE=

Execution of - Fallback System
Steering and ’Z?g’::"‘f: Performance | Capability
Acceleration/ c of Dynamic (Driving

Deceleration vironment Driving Task Modes)

Human driver monitors the driving environment S S ——

No the full-time performance by the human driver of all
Automation aspects of the dynamic driving task, even when enhanced Human driver Human driver Human driver
by warning or intervention systems

Narrative Definition

the driving mode-specific execution by a driver assistance
system of either steering or acceleration/deceleration using Siarian diiver

information about the driving environment and with the Human driver Human driver Sarme crving
and system modes

Driver

Assistance expectation that the human driver perform all remaining

aspects of the dynamic driving task

the driving mode-specific execution by one or more driver
assistance systems of both steering and acceleration/
Partial deceleration using information about the driving
Automation environment and with the expectation that the human
driver perform all remaining aspects of the dynamic driving
task

Automated driving system (“system”) monltors the driving environment — _

the driving mode-specific performance by an automated
Conditional driving system of all aspects of the dynamic driving task
Automatlon with the expectation that the human driver will respond
appropriately to a request fo intervene

Some driving

System Human driver Human driver s

Some driving

System System Human driver otas

the driving mode-specific performance by an automated
High driving system of all aspects of the dynamic driving task, Some driving
Automatlon even if a human driver does not respond appropriately to a Dyt modes
request to intervene

the full-time performance by an automated driving system
Full of all aspects of the dynamic driving task under all roadway
Automatlon and environmental conditions that can be managed by a
human driver

All driving

System R

. . .. Copyright © 2014 SAE International. The summary table may be
(https:/www.sae.org/misc/pdfs/automated_driving.pdf) freely copied and distributed provided SAE International and J3016
are acknowledged as the source and must be reproduced AS-IS.
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Research areas of self-driving

Hardware Software
Sensors: Object/position detegtlon:
Lidar, millimeter radar, sonar, lane, car, human,_ blc.ycle,
GPS, steering angle, velocity, L Sce_ne understandm_g. |
accelerometer, - Obﬁq mc:jvemept, intension,
camera (stereo, IR, FIR) collision detection
Body: Control:
motor, steering, brake, accelerator, s_tehelrlng,l speed,l_path Pl
body material, shape, ... High-level control:
knowledge base, dialogue,
reasoning
J L J L
Infrastructure

driving safety support

3D digital road map

Intelligent Transport System (ITS):
vehicle-to-vehicle communication,

(digital traffic signal, traffic regulation info, road side sensor),
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Why we need driving knowledge bases?

* |n the fully automated (level 5) driving,

— cars should do (without a human driver):
 Careful consideration of passengers/destinations
e Decision making in some exceptional road conditions
* Conversations, like with a taxi driver

In accidents, the car should know what to do
* Avoidance of criminal usages

2

Almost equivalent to creating Al robots!
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Comparison with autonomous robots

* In a general sense, autonomous cars are a kind of
autonomous robots, sometimes called as robot cars.

 Autonomous cars are constrained by:
— Strict regulations such as traffic laws.

— Underactuated manipulation: Inputs are steering and
brake/accelerator (gas) for 6 degrees of freedom.

— Highest priority in safe driving.

2

For knowledge-based driving, these constraints are not
disadvantages but can be advantages.
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Three Laws of Robotics

1. A robot may not injure a human being or, through
inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human
beings except where such orders would conflict
with the First Law.

3. A robot must protect its own existence as long as
such protection does not conflict with the First or
Second Laws.

Isaac Asimov, "Runaround®, 1, Robot, 1950.
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Three Laws of Autonomous Vehicles

1. An autonomous vehicle may not injure a human
being or, through inaction, allow a human being to
come to harm.

2. An autonomous vehicle must obey laws except
where such orders would conflict with the First Law.

3. An autonomous vehicle must obey the orders given
it by human beings except where such orders would
conflict with the First or Second Laws.

Yutaka Sasaki, presentation material, Smart Vehicles Research
Center Symposium 2016. (in Japanese)



Our approach to level 5 self-driving

Current self-driving

Sensor info

[

Control

(driving knowledge is
closely tied to the control)

()
_/

()
N

Introduce a KB @

Sensor info

\

Control

@{>Realtme IF
Commumcatmn i

Research topics:

* How to model driving knowledge bases?
How to acquire driving knowledge?
How to manage the knowledge bases?
How to achieve real time performance?
How to evaluate KB quality?

Knowledge ... T .

acquisition |
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Advantages of driving knowledge bases

* Enable:
— to obey traffic laws while driving.
— to follow driving manners, e.g. hazard flashers.
— (shallow) reasoning like human drivers do.
— to make conversation, like with a taxi driver.

— to drive carefully for safety, like slowing down when seeing
some children on a side walk.

— to make decisions using common sense, e.g. inoperative
traffic signals.

* Can be updated/corrected independent of driving
control software.

— Tailoring a KB for each country/region.
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Semantic Technology for self-driving
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Ontology-based driving (at intersections)

* Ralf Regele, Using Ontology-Based Traffic Models for More Efficient Decision Making of Autonomous Vehicles,
Fourth International Conference on Autonomic and Autonomous Systems, 2008.

R,

* B. Hummel, Description logic for scene understanding at the example of urban road intersections, Fakultat fiir
Maschinenbau Universitat Karlsruhe (TH), 2009.

* Michael Hiilsen et al., Traffic intersection situation description ontology for advanced driver assistance, IEEE
Intelligent Vehicles Symposium (IV), 2011.

* Edson Prestes et al., Core Ontology for Robotics and Automation, Workshop on Standardized Knowledge
Representation and Ontologies for Robotics and Automation, 2014.

* Armand et al., Ontology-based context awareness for driving assistance systems, IEEE Intelligent Vehicles
Symposium (IV), 2014.

* Brunner et al., 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Ontologies Used
in Robotics: A Survey with an Outlook for Automated Driving, 2017

* Lihua Zhao, Ryutaro Ichise, Seiichi Mita, Yutaka Sasaki, An Ontology-Based Intelligent Speed Adaptation System
for Autonomous Cars, The 4th Joint International Semantic Technology Conference (JIST2014), 2014

* Lihua Zhao, Ryutaro Ichise, Tatsuya Yoshikawa, Takeshi Naito, Toshiaki Kakinani, Yutaka Sasaki, Ontology-based
Decision Making on Uncontrolled Intersections and Narrow Roads, 2015 IEEE Intelligent Vehicles Symposium,
Seoul, 2015.

* Lihua Zhao, Ryutaro Ichise, Yutaka Sasaki, Zheng Liu, Tatsuya Yoshikawa, Fast Decision Making using Ontology-
based Knowledge Base, 2016 IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, June 2016.

* Lihua Zhao, Ryutaro Ichise Zheng Liu, Seiichi Mita, and Yutaka Sasaki, Ontology-based Driving Decision Making:
A Feasibility Study at Uncontrolled Intersections, IEICE Transactions on Information and Systems, Vol. E100.D,
No. 7, pp. 1425-1439, 2017.
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Ontology-based Traffic Models

[Regele, 2008]
e CyberCars-2 Project (FP5)

— “development of a fleet of fully autonomous cybercars which
can be used for passenger transport.”

— introduction of road connection networks with conflict,
neighboring and opposing relations.

conflict
E &L{_____ opposite
~;$

;\ neighboring
e The model does not contain semantic information:

— speed limitation, actual geometric information of
the roads.
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Logical representation of road intersections
[Hummel, 2009]

Formal representations with Description Logic
* Terminological box (TBox)

TwoWayRoad

B//Roawl i&:::::::OneWayRoad
TG UTurnLane OneWayLaneSouth
Lane OnewaYLaneé$::::OneWayLaneNorth

TwoWayLane

UTurn-Marking

e Assertion box (ABox)
a = {georgeSt: AhasPart. (OneWayLaneSouthlUTwoWayLane)}

(George St. has some lane with driving direction southwards.)
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Traffic Intersection Situation Description Ontology
[Hulsen et al. 2011]

* Intersection ontologies contain concepts of car, crossing, road connection
(lane and road), and sign at crossing (traffic light and traffic sign).

CrossingPlain
TBOX: ar %CrossingWTrafficLight ABOX:
Cross LaneEntering
Crossing 4”””’— LaneExiting

ingWTrafficSign
/ LaneWtoWay kaSnghtOf\Nay
Lane TLaCr Green
Top RoadConnection ¢ _ Rrpad TLaCr Yellow
TLaCr Red
TrafficLightAtCrossing - TLaCr_Off “h Al ]
. . N . asToYield
SlgnAthOSSlngﬁ:::jTrafficSignAtCrossing4——nght0fwayslgn A
YieldSign
StopSign

Rule: Crossing(?cr) Aneg(CrossingWTrafficLight(? cr)) A
neg(CrossingWTraf ficSign(? cr)) — CrossingPlain(? cr)

* Inasimple intersection case, it takes less than 0.5s for DL
reasoning. In a complex case, it takes 1.1-3.6s.
* Not tested with simulation or real-world data.



Computational Intelligence Lab
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Core Ontology for Robotics and Automation (CORA)

[Prestes et al. 2014]

e Drafted by IEEE Standard Association (IEEE SA)

* Extended the Suggested Upper Merged
Ontology (SUMO).

SUMO

CORA
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Ontology-Based Context Awareness

[Armand et al. 2014]

* An ontology includes context concepts:

— Mobile Entity (Pedestrian and Vehicle), Static Entity (Road Infrastructure
and Road Intersection), context parameters (isClose, isFollowing, and
isToReach)

* to understand the context information when it approaches road
intersections. |

 ———

14 SWRL rules of spatio-temporal relationships ,
stop

(example)
vehicle (?vl) A StoplIntersection(?stopl) A isToReach (?vl, ?stopl)
— hasToStop (?vl, ?stopl)

(A vehicle that is about to reach a stop intersection has to stop at the
intersection.)
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[Zhao et al. 2014]

* Driving ontology development since 2009.

Decision rules (SWRL)

Car Ontology Control Ontology = Map Ontology

Realtime reasoner (Protégé/pellet)

PreScan simulator

Name: Dataset for Safe Autonomous Driving
Homepage: http://www.toyota-ti.ac. jp/Lab/
Denshi/COIN/Ontology/
Data Dump: TTICore-0.3/
VoID Description:  void.ttl
RDF Triples: 37566
Entities: 1424
Classes 149
Data Properties 40
Object Properties 35 Experimental vehicle

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 21
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TTI Core Ontology

https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/Ontology/TTICore-0.03/

(Licensed under CC Attribution-NonCommercial-ShareAlike 4.0 International)

{
[

TTI Core v0.03 T aaase. . P ==

€ C 8 PSS/ WWW.TOY0tE-0.20.30

®
(<]

Ontology

— Car

TTI Core v0.03: Core Ontologies for Safe Autonomous Drivin
— Control ¥ ¢

™m | RETRAE
COIN ) URBEERE

We are pleased to annoumce the release of our Smart Velucle Ontologies

— M d p Overview
Thus page shows the links 10 the releass of our Ontologees. Piease refer to the license terms

The followwng ontologyes and data sets are used for developmg Advanced Driver Assistance Systems m the Research Censer for Smant
Vehacles of the Tovota Techoological Instinste

File list

— Car

Description of the data sevs m VoID
Aol file

— Control —

- M a p Congol Outology

Map Onology

Sample dara sets

Cog cdats

Decision rules (SWRL)

TT1 comesn tap dats
Tempaku:area map dasa

Eath data pear TTI campus

Car Ontology Control Ontology ~ Map Ontology

Realtime reasoner TTI-Yagesn path data

PreScan simulator

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 22
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TTIl Core: Classes

Control class

{ ContinueDriving |

GoForward |
GoBackward |
WaitThenGo |

| Thing f«— DrivingAction

ToRight |

TurnRight |

| Path j=— Node |

| PathSegment |

Car class

SmallSpecialVehicle |

SpecialVehicle LargeSpecialVehicle l

| Venicle RegularVehicle [of PassengerCar fe Car |
i
1 CarParts s MyCar
2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018)

Map class

=3

RouteOf

Transportation R

OrdinaryRoad

PrivateRoad
MunicipalRoad

23
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TTI Core: Object/data properties

Control property

------ m approachTo

------ m collisionWarningWith
------ ®mendlLane

------ mgiveWay

------ mhasMode

~—~mnodePos
“mpathSegmentID

- enterOf

el e XTEOF
------ misPathSegmentOf
------ ®mnextMode
------ mnextPathSegment
------ mpreviode
------ mprevPathSegment
------ m startLane

Car property

v-mtopObjectProperty ¥ --mtopDataProperty
~-mcurrentPath ®brake
~-misRunningOn m car_height
~-musedSensor ® car_length

------ mcar_model

...... -EﬂrID

------ mdistance_back
------ mdistance_front
------ mfront_overhang

------ @ height_max

------ mrear_overhang
------ m steer_angle

------ mthrottle

------ mvelocity

Map property

g hasIntersection
------ ®m hasLane
------ ®mhasRoadSegment
------ misConnectedTo
------ misLaneOf
------ misLeftOf
------ misNextTo

------ misRightOf

------ ®misRoadSegmentOf
------ mnearTo

------ mrelatedTrafficLight
------ mturnLeftTo

------ ®mturnRightTo

2018/11/28 = mwheel_base (C)2018 Yutaka Sasaki, TTI (JIST2018)

------ W curve_id
------ wmdrivingDir
------ @ enterPos
------ m exitPos

------ mopening_hours
------ @ operator

------ @ orientation

------ mosm_node_id
------ mosm_ref

------ mosm_way_id

------ mpostcode

------ ®mpubFacAdmin
------ wmriver_id

------ mspeedMax

------ m website

24
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Visualization of road connections

* & Hisakata2TTIRoa [" ) Intersection * @ Hisakata2TTIRoa
dRS2Lane1 ! dRS3Lane1
I hasIndividual
+ ) + -
* @ Hisakata2TTIRoa : # Hisakata2TTIRoa
dRS2Lane2 . # Hisakata2TTIRoa dRS3Lane2
_—~ dint2_3 M~
. - o i v
isLaneOf e SO / \ /s AN . isLaneOf
o7 (\(\Gc’\e / - ; N ~ 00/70 i
% o - acti S \
P e .’ P hasltersection \\A\% o N
# Hisakata2TTIRoa ~ _ |*@ Hisakata2TTIRoa | . | 4 Hisakata2TTIRoa
dRS2 ' d ' dRS3
;o\ ~._hasRoadSegment hasRoadSegment - j’ 1
, ] ~. N oy
isConnectedTo &7 A . Nasy, Q- & A
Y 4 0y, QW /& isConnectedTo
S gy S -
4 ‘ h ) . + 3 - ~
* @ Hisakata2TTIRoa = & Hisakata2TTIRoa
dint1_2 @ RoadSegment dint3_4

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 25
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Table 1: An example of map ontology based instances.

Subject

Property

Object

tempaku:Hisakata2Road
tempaku:Hisakata2Road
tempaku:Hisakata2Road
tempaku:Hisakata2Road
tempaku:Hisakata2Road

rdf:type
map:speedMax
map:osm_ref
map:hasIntersection

map:hasRoadSegment

map:LocalRoad

“40” " "kmh <+— speed limit
osm_way:49559442
tempaku:Hisakata2Int5_6
tempaku:Hisakata2TTIRoadRS1

tempaku:Hisakata2Int5_6
tempaku:Hisakata2Int5_6
tempaku:Hisakata2Int5_6
tempaku:Hisakata2Int5_6
tempaku:Hisakata2Int5_6
tempaku:Hisakata2Int5_6
tempaku:Hisakata2Int5_6

rdf:type
map:boundPos
map:boundPos
map:boundPos
map:boundPos
map:isConnectedTo
map:isConnectedTo

map:Intersection

35.107663, 136.983845
35.107846, 136.983889
35.107860, 136.983683
35.107708, 136.983604
tempaku:Hisakata2RS5
tempaku:Hisakata2TTIRoadRS1

GPS position

tempaku:Hisakata2RS5
tempaku:Hisakata2RS5
tempaku:Hisakata2RS5
tempaku:Hisakata2RS5

map:boundPos
map:boundPos
map:isConnectedTo

map:RoadSegment
35.107663, 136.983845
35.107357, 136.984067
tempaku:Hisakata2Int5_6

tempaku:Hisakata2RS5Lanel
tempaku:Hisakata2RS5Lanel
tempaku:Hisakata2RS5Lanel
tempaku:Hisakata2RS5Lanel

map:enterPos
map:exitPos
map:isLaneOf

map:OneWayLane
35.107353, 136.984054
35.107657, 136.983832
tempaku:Hisakata2RS5

tempaku:Hisakata2RS5Lane2
tempaku:Hisakata2RS5Lane2
tempaku:Hisakata2RS5Lane2
tempaku:Hisakata2RS5Lane2

map:enterPos
map:exitPos
map:isLaneOf

map:OneWayLane
35.107667, 136.983856
35.107362, 136.984081
tempaku:Hisakata2RS5

2018/11/28

(C)2018 Yutaka Sasaki, TTI (JIST2018)
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Simulator/real-world Experiments

[able 5: Query the speed limit of currentPathSegment

SELECT 7max

WHERE {

{ tempakuwcurrent PathSegment mapiisLancOf
map:isRondSegmentOf  7road

Troadsegment.

Troadsegment

Troad map:speedMax Tmax

} UNION |
'road map:hasIntersection map:current PathSegment
'road mapispeed Max max. }

Lable 6: C-SPARQL query for checking if a car overspeeds its own speed limit.,

REGISTER QUERY OverSpeedCheck AS

SELECT Year

FROM STREAM <http://www.tovota-tiac.jp/Lah/Denshi /COIN /stream
IRANGE 500ms STEP 50ms]

WHERE { Tear car:velocity Tspe d }

(;“()I“I “\ "\|n‘l'l|

HAVING (AVG(7speed) == maxSpeed )

Table 7: Instances in rlu I\nuv ledee Base,

Number of Instances \[nn-l Limit

I'ypes of Instances

Intersection B

RoadSegment a9

Kindergarten |

BusLane o

OneWayLarn 162

PrivateRoad 1 25km/h

MunicipalRoad | S0km /1l

LocalRoad o 0km/h (3), 50km/h (2)
Path |

2018/11/28

= .
o m——.

1) PreScan Simnlatos () Intedligenst Car

Fig. 6 PreSean simulator car and intelligent ear

o) PresSes \jectory
RE 1 Trajector (b} Ttelligemt Cur Tragectory

Fig. 7: Trajectory for the experiment

- Simulation:
Reasoning time: 242ms
Query time: 2-23ms

- Real-world (Off line):
Reasoning: 117ms
Query time: 3-23ms

(C)2018 Yutaka Sasaki, TTI (JIST2018) 28
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Ontology-based decision making
at uncontrolled intersections
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Targeted traffic scenario

[Zhao et al. 2017]
* Real world problems at uncontrolled

intersections, i.e. no traffic lights.

* |n Japan, there are a lot of narrow roads where
even human drives feel difficulty in driving.

I

CarA|| | — Not one-way
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e Car A has the lowest priority because it cannot
interfere traffics on the wide road bylaw.

e Car B has higher priority than Car A.
e Car C has the highest priority.

* The narrow road is difficult for two vehicles to run
freely; It is safer to stop on the left side and give way
to the other vehicle to pass by slowly.

* In this case, Car A should go out of the narrow road
before Car B for safe driving. el el

_______________ -

Level 5 autonomous cars should solve carA |

this situation with some reasoning.-oc




Map data creation

« Using OpenStreetMap data, we created a map data set for our
ontology.

« Lane connections are manually considered.
» Independent of map data used for the drive control.

A: Yagotolshizakalnt4 5
B: YagotolshizakaRS4Lane1
\ '\ |\ C:YagotolshizakaRS4Lane2
'€  D:YagotolshizakaRS5Lane1
\ '\ | E: YagotolshizakaRS5Lane2
& A8 §; F: YagotolshizakaCrossWalk1
\ v | G: YagotolshizakaGrandirLaneAdapter1

g H: YagotolshizakaGrandirRS1

- "\i_____:_,J»-"'“L_':J»-—-E

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 32



Created 3D similation

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018)
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Case analysis

2018/11/28

(C)2018 Yutaka Sasaki, TTI (JIST2018)
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SWRL Rules (out of 14 rules)

1 collisionWarningWith(?carX, ?carY)
= CollisionWarning(?carX) A CollisionWarning(?carY)
2 Intersection(?int) A isRunningOn(?carX, ?lanel)
A turnRightTo(?lanel, ?lane2)
A nextPathSegment(?lanel, ?int) A nextPathSegment(?int, ?lane2)
= TurnRight(?carX)
CollisionWarning(?carX) A CollisionWarning(?carY)
A GoForward(?carY) A TurnRight(?carX)
= Stop(?carX) A giveWay(?carX, ?carY)
4  MyCar(?carl) A isRunningOn(?carl, ?int)
A Intersection(?int) A collisionWarningWith(?car1, ?car2)
= Stop(?carl) A giveWay(?carl, ?car2)
5 TwoWayLane(?lane) A isRunningOn(?carX, ?lane)
CollisionWarning(?carX) A CollisionWarning(?carY)
= ToLeft(?carX), giveWay(?carX, ?carY)

(68

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 35
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( Sensor Data Transmitter J

1 Timestamp Latitude | Longitude | Velocity | Heading Angle | Car ID | Collision Warning

2
/ C-SPARQL Engm\
4

A

Sensor Data Receiver

¥3 |

SPARQL Query Engine

Ontology-based
Knowledge Base

e
SWRL RuIeJ

Decision Making |9 Reasoner
\System /

Y
[ Path Planning System ]

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 36
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Input : currRS # Current Road Segment
Output: SubKB # Sub-Knowledge Base
dirList « getConnectedRS(currRS):;
rsList « dirList:
SubKB « 0
foreach rs € dirList do

| rsList.add( getConnectedRS(rs) ):
end

foreach rs € rsList do
SubKB.add( getAlllnfo(rs) )

if <rs. map:hasLane, lane> then
| laneList.add( lane )

else

end

end

foreach lane € laneList do
| SubKB.add( getAlllnfo(lane) )

end
SubKB.add( SWRLRules )
return SubKB

Algorithm 1: Sub-Knowledge Base construction.

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018) 37



Sub-Ontology (SubKB)

Subject

Property

Object

yagoto:AnoNagoyalLine
yagoto:AnoNagoyaLine
yagoto:AnoNagoyaLine
yagoto:AnoNagoyaLine
yagoto:AnoNagoyaLine
yagoto:AnoNagoyaLine

rdf:type
map:hasIntersection

map:PrefecturalRoad
yagoto:AnoNagoyalnt3_4

map:hasRoadSegment yagoto: AnoNagoyaRS3
map:hasRoadSegment yagoto: AnoNagoyaRS4

map:speedMax
map:osm_way _id

“40™""kmh
osm_way: 122098916

yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyalnt3_4

rdf:type
map:isConnectedTo

map:isConnectedTo
map:isConnectedTo
map:boundPos
map:boundPos
map:boundPos

map:Intersection
yagoto:AnoNagoyaRS3
yagoto:AnoNagoyaRS4
yagoto:GrandirLane Adapter]
35.134697, 136.964103
35.134762, 136.964181
35.134788, 136.964072

yagoto:AnoNagoyaRS4
yagoto:AnoNagoyaRS4
yagoto:AnoNagoyaRS4
yagoto:AnoNagoyaRS4
yagoto:AnoNagoyaRS4

rdf:type
map:isConnectedTo

map:isConnectedTo
map:boundPos
map:boundPos

map:RoadSegment
yagoto:AnoNagoyalnt3_4
yagoto:AnoNagoyaCrossWalk 1
35.134697, 136.964103
35.134574, 136.964147

yagoto:AnoNagoyaRS4Lane2
yagoto:AnoNagoyaRS4Lane2
yagoto:AnoNagoyaRS4Lane2
yagoto:AnoNagoyaRS4Lane?2
yagoto:AnoNagoyaRS4Lane2
yagoto:AnoNagoyaRS4Lane2

rdf:type
map:isLaneOf

map:enterPos
map:exitPos
control:turnRightTo
control:goStraightTo

map:OneWayLane
yagoto:AnoNagoyaRS4
35.134570, 136.964125
35.134693, 136.964082
yagoto:GrandirLaneAdapter|
yagoto:AnoNagoyaRS3Lane2

2018/11/28

A: Yagotolshizakalnt4 5

: YagotolshizakaRS4Lane1
(\' YagotolshizakaRS4Lane?2
D) YagotolshizakaRS5Lane1

Q‘l‘x‘ F: YagotolshizakaCrossWalk

|} | G: YegotolshizakaGrandirLaneAdaptert
| H: YagotolshizakaGrandirRS1 -

g
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Real time performance

Acceleration by sub-ontology

* Whole Ontology (Map)  Size of Knowledge Base

— Max: 965ms ‘*Whole Knowledge Base
. *+407kb (or larger)
— Min: 305ms <Sub-Knowledge Base

— Avg: 470ms 19 ~ 40kb

e Sub Ontology (Sub-Map)

— Max: 236ms o e
e \Q‘: eriiabe N3

— Min: 37ms | ™ S

— Avg: 53ms / gt



Criticism?

* There are always some criticism to our approach.
— Old style
— Knowledge-base is slow
— Poor handling of exceptional cases
— Following a human way would lead to unsafety
— Deep learning is more powerful and practical

.

It Is time for the semantic technology community to
tackle the real-world problems related to self-driving.
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Our on-going studies:
Evaluations of Driving Ontologies
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Quality evaluation of driving ontologies

 What are the conditions by which authorities
approve level 5 cars to run on any public
roads?

- Open question!

2

— If an autonomous car passes its driver’s license
test, we can say the autonomous car has ability
and knowledge to drive.

e |dea
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Overview

Paper test

Q “The traffic sign includes the instruction sign and
the regulation sign.” (Yes/No)

Logical form ‘

Ax. Ay. Az. TrafficSign(x) A InstuctionSign(y) A RegulationSign(z) A
subClassOf(y, x) A subClassOf(z, x)

ASK WHERE {
InstructionSign rdfs:subClassOf TrafficSign.
RegulationSign rdfs:subClassOf TrafficSign .
}

2018/11/28 (C)2018 Yutaka Sasaki, TTI (JIST2018)
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Ontology-
based driving
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Questions beyond the scope

« Commonsense question

— “You can put boxes on a road” (Yes/No)

e Calculation question

— “3 adults and 3 children can ride the car with the
riding seats of 5.” (Yes/No)

* Questions with figures



3 OTA TECHNOLOGICAL INSTITUTE Computational Intelligence Lab

Our on-going studies:
Driving Ontology Expansion
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Adding knowledge to TTI core ontology

Converting a driving guideline to knowledge.

You can drive the following types of vehicles - - -

License type car type

LargeLicense -

MiddleLicense s

RegularLicense RegularVehicle, Moped, - - -

- L

RegularLicense licenseToDrive  —  RegularVehicle
K licenseToDrive  —» Moped
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e Manual semantic annotations of e =
“Rules of Road” (3@ 24 HI|) |
—> on going

CONDITION P

LOGATION rede/os ity

; TrafficLight OBEY e ——
[RallroadCrossmgj ' Slénal Pass* N =i

RB. BYICEEROSIHAE. BSICk>THBT BT ENTEET,

(If there is a traffic light at a railroad crossing, (you) can pass ===
the crossing according to the signal.)

<~

Deep Learning models

-

Semi-automatic ontology expansion
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Term extraction

= Recurrent Neural Network (RNN) models

=
5 TOYOTA TECHNOLOGICAL INSTITUTE

Tag Prediction Te rm ta gS
B-Road I-Road (o] B-Speed I-Speed -
 argmax ¢ argmax C argmax O C argmax C aramax
o - o r s o = I S
Tag Scores

N N N O O O A B O

* softmax © softmax ~ softmax  Softmax
R R S B S e

Dropout
(rate : 0.5)

i
o
' p. :g
(-
ool
v

- - - -

( Concat ) (— Conca!__-') ( Concal > C'»Co:\cat__) C__Concal_':)

SO el ~—— Bi-directional RNN
Backward
LSTM -

Rules of road

F o
Forward ¥
LSTM

Word
Embedding
(size : 100)
E R il PR
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Experimental settings

Textual data: Learning Model:
Annotated “Rules of Road” RNN

- #isentence : 2,150 - dimensionality : 100
= #fwords : 43,395 = batch size : 10
= #traffic terms: 8,822

- #traffic term hierarchy: 8 levels deep
. #distinct terms: : 780 * type : LSTM (Long Short-Term Memory)

* iterations: 20,000
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Term extraction results

0.9
0.8
0.7
@ 0.6 0.565
2 0.489 —
g% 0.425
w 0.4
0.3
0.2
0.1
0
Conditional Random Field LSTMs Bi-directional LSTMs
2+*PrecisionxRecall
F-measure = —
Presicion+Recall
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» Qur previous approach
targeted intersections.

* In a parking lot, we need
a different approach.
> Less restricted

- Our own simulator for parking scenario.
- Ontology rules should include parking manner, not laws.

2018/11/28
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Current progress

- Parking scenario: manner-based decisions

IN/OUT

4

I LU

L | |
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Conclusions

 The ontology-based driving approach leads to
the level 5 self-driving.

* A lot of open questions. Studies are ongoing.
* Reasoning time is an issue:

— To accelerate, the dynamic creation of a sub-
ontology is effective.

* Semantic technology will be a core technology
for the level 5 self-driving.
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